An optogenetic analogue of second-order reinforcement in Drosophila

2019 | journal article; research paper

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​An optogenetic analogue of second-order reinforcement in Drosophila​
König, C.; Khalili, A.; Niewalda, T.; Gao, S. & Gerber, B. ​ (2019) 
Biology Letters15(7) art. 20190084​.​ DOI: https://doi.org/10.1098/rsbl.2019.0084 

Documents & Media

License

GRO License GRO License

Details

Authors
König, Christian; Khalili, Afshin; Niewalda, Thomas; Gao, Shiqiang; Gerber, Bertram 
Abstract
In insects, odours are coded by the combinatorial activation of ascending pathways, including their third-order representation in mushroom body Kenyon cells. Kenyon cells also receive intersecting input from ascending and mostly dopaminergic reinforcement pathways. Indeed, in Drosophila, presenting an odour together with activation of the dopaminergic mushroom body input neuron PPL1-01 leads to a weakening of the synapse between Kenyon cells and the approach-promoting mushroom body output neuron MBON-11. As a result of such weakened approach tendencies, flies avoid the shock-predicting odour in a subsequent choice test. Thus, increased activity in PPL1-01 stands for punishment, whereas reduced activity in MBON-11 stands for predicted punishment. Given that punishment-predictors can themselves serve as punishments of second order, we tested whether presenting an odour together with the optogenetic silencing of MBON-11 would lead to learned odour avoidance, and found this to be the case. In turn, the optogenetic activation of MBON-11 together with odour presentation led to learned odour approach. Thus, manipulating activity in MBON-11 can be an analogue of predicted, second-order reinforcement.
Issue Date
2019
Journal
Biology Letters 
Project
FOR 2705: Dissection of a Brain Circuit: Structure, Plasticity and Behavioral Function of the Drosophila Mushroom Body 
Working Group
RG Gerber 
ISSN
1744-9561
eISSN
1744-957X
Language
English

Reference

Citations


Social Media