Intermittent Lead Exposure Induces Behavioral and Cardiovascular Alterations Associated with Neuroinflammation

2023 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Intermittent Lead Exposure Induces Behavioral and Cardiovascular Alterations Associated with Neuroinflammation​
Shvachiy, L.; Amaro-Leal, Â.; Outeiro, T. F. ; Rocha, I. & Geraldes, V.​ (2023) 
Cells12(5) pp. 818​.​ DOI: https://doi.org/10.3390/cells12050818 

Documents & Media

document.pdf2.63 MBAdobe PDF

License

GRO License GRO License

Details

Authors
Shvachiy, Liana; Amaro-Leal, Ângela; Outeiro, Tiago F. ; Rocha, Isabel; Geraldes, Vera
Abstract
The nervous system is the primary target for lead exposure and the developing brain appears to be especially susceptible, namely the hippocampus. The mechanisms of lead neurotoxicity remain unclear, but microgliosis and astrogliosis are potential candidates, leading to an inflammatory cascade and interrupting the pathways involved in hippocampal functions. Moreover, these molecular changes can be impactful as they may contribute to the pathophysiology of behavioral deficits and cardiovascular complications observed in chronic lead exposure. Nevertheless, the health effects and the underlying influence mechanism of intermittent lead exposure in the nervous and cardiovascular systems are still vague. Thus, we used a rat model of intermittent lead exposure to determine the systemic effects of lead and on microglial and astroglial activation in the hippocampal dentate gyrus throughout time. In this study, the intermittent group was exposed to lead from the fetal period until 12 weeks of age, no exposure (tap water) until 20 weeks, and a second exposure from 20 to 28 weeks of age. A control group (without lead exposure) matched in age and sex was used. At 12, 20 and 28 weeks of age, both groups were submitted to a physiological and behavioral evaluation. Behavioral tests were performed for the assessment of anxiety-like behavior and locomotor activity (open-field test), and memory (novel object recognition test). In the physiological evaluation, in an acute experiment, blood pressure, electrocardiogram, and heart and respiratory rates were recorded, and autonomic reflexes were evaluated. The expression of GFAP, Iba-1, NeuN and Synaptophysin in the hippocampal dentate gyrus was assessed. Intermittent lead exposure induced microgliosis and astrogliosis in the hippocampus of rats and changes in behavioral and cardiovascular function. We identified increases in GFAP and Iba1 markers together with presynaptic dysfunction in the hippocampus, concomitant with behavioral changes. This type of exposure produced significant long-term memory dysfunction. Regarding physiological changes, hypertension, tachypnea, baroreceptor reflex impairment and increased chemoreceptor reflex sensitivity were observed. In conclusion, the present study demonstrated the potential of lead intermittent exposure inducing reactive astrogliosis and microgliosis, along with a presynaptic loss that was accompanied by alterations of homeostatic mechanisms. This suggests that chronic neuroinflammation promoted by intermittent lead exposure since fetal period may increase the susceptibility to adverse events in individuals with pre-existing cardiovascular disease and/or in the elderly.
Issue Date
2023
Journal
Cells 
Project
SFB 1286: Quantitative Synaptologie 
SFB 1286 | B08: Definition von Kaskaden molekularer Veränderungen bei Synucleinopathien während der Neurodegeneration 
EXC 2067: Multiscale Bioimaging 
Working Group
RG Outeiro (Experimental Neurodegeneration) 
eISSN
2073-4409
Language
English

Reference

Citations


Social Media