Optimal mass distribution for passivity-based bipedal robots

2006 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Optimal mass distribution for passivity-based bipedal robots​
Hass, J.; Herrmann, J. M. & Geisel, T.​ (2006) 
The International Journal of Robotics Research25(11) pp. 1087​-1098​.​ DOI: https://doi.org/10.1177/0278364906072449 

Documents & Media

Details

Authors
Hass, J.; Herrmann, J. Michael; Geisel, Theo
Abstract
This paper reports how and to what extent the mass distribution of a passive dynamic walker can be tuned to maximize walking speed and stability. An exploration of the complete parameter space of a bipedal walker is performed by numerical optimization, and optimal manifolds are found in terms of speed, the form of which can be explained by a physical analysis of step periods. Stability, quantified by the minimal basin of attraction, is also shown to be high along these manifolds, but with a maximum at only moderate speeds. Furthermore, it is examined how speed and stability change on different ground slopes. The observed dependence of the stability measure oil the slope is consistent with the interpretation of the walking cycle as a feedback loop, which also provides an explanation for the destabilization of the gait at higher slopes. Regarding speed, an unexpected decrease at higher slopes is observed. This effect reveals another important feature of passive dynamic walking, a swing-back phase of the swing leg near the end of a step, which decreases walking speed on the one hand, but seems to be crucial for the stability of the gait on the other hand. In conclusion, maximal robustness and highest walking speed are shown to be partly conflicting objectives of optimization.
Issue Date
2006
Status
published
Publisher
Sage Publications Ltd
Journal
The International Journal of Robotics Research 
Organization
Fakultät für Physik 
ISSN
1741-3176; 0278-3649
Notes
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.

Reference

Citations


Social Media