Horizontal flow fields in and around a small active region The transition period between flux emergence and decay

2016 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Horizontal flow fields in and around a small active region The transition period between flux emergence and decay​
Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Manrique, S. J. G.; Sobotka, M. & Gonzalez, N. B. et al.​ (2016) 
Astronomy and Astrophysics596 art. A3​.​ DOI: https://doi.org/10.1051/0004-6361/201628380 

Documents & Media

aa28380-16.pdf6.78 MBAdobe PDF

License

Published Version

GRO License GRO License

Details

Authors
Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Manrique, S. J. Gonzalez; Sobotka, M.; Gonzalez, N. Bello; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, Albrecht W.; Kneer, F.; Lagg, A.; Loehner-Boettcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, Parth K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Luehe, O.; Waldmann, T.
Abstract
Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s(-1) is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules.
Issue Date
2016
Status
published
Publisher
Edp Sciences S A
Journal
Astronomy and Astrophysics 
Project
info:eu-repo/grantAgreement/EC/FP7/312495/EU/High-Resolution Solar Physics Network/SOLARNET
Organization
Fakultät für Physik 
ISSN
1432-0746

Reference

Citations


Social Media