Hydrogen-bonded OH stretching modes of methanol clusters: A combined IR and Raman isotopomer study

2007 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Hydrogen-bonded OH stretching modes of methanol clusters: A combined IR and Raman isotopomer study​
Larsen, R. W.; Zielke, P. & Suhm, M. A. ​ (2007) 
The Journal of Chemical Physics126(19) art. 194307​.​ DOI: https://doi.org/10.1063/1.2732745 

Documents & Media

License

GRO License GRO License

Details

Authors
Larsen, Rene Wugt; Zielke, Philipp; Suhm, Martin A. 
Abstract
A comprehensive study of the OH and OD stretching fundamentals in clusters of methanol and its isotopomers CH3OD, CD3OH, and CD3OD provides detailed insights into the hydrogen-bond mediated coupling as a function of cluster size. The combination of infrared and Raman supersonic jet spectroscopy enables the observation and assignment of all hydrogen-bonded OH stretching modes of isolated methanol trimer and methanol tetramer. A consistent explanation for the spectral complexity observed more than a decade ago in methanol trimer in terms of low-frequency methyl umbrella motions is provided. Previous explanations based on cluster isomerism or anharmonic resonances are ruled out by dedicated jet experiments. The first experimental lower bound for concerted quadruple proton transfer in S-4 symmetric methanol tetramer is derived and compared with theoretical predictions. The observed isotope effects offer insights into the anharmonicity of the localized OH bond. The performance of harmonic B3LYP and MP2 calculations in predicting hydrogen-bond-induced spectral shifts and couplings is investigated. (C) 2007 American Institute of Physics.
Issue Date
2007
Status
published
Publisher
Amer Inst Physics
Journal
The Journal of Chemical Physics 
Organization
Institut für Physikalische Chemie 
ISSN
0021-9606

Reference

Citations


Social Media